Cookie Stoichiometry

A recipe is very similar to a chemical equation. Both list ingredients and products. Both can be used to determine the amount of an ingredient needed to use up another ingredient, or to produce a certain amount of product. Use the recipe below to answer the following questions.

Recipe for Mrs. Smith's Chocolate Chip Cookies

3 cups all-purpose flour	Preheat oven to $350^{\circ} \mathrm{F}$
1 teaspoon baking soda	Mix first 3 ingredients and set aside.
1 teaspoon salt	Mix the rest of the ingredients except chocolate.
$2 / 3$ cups shortening	Slowly add flour mixture.
$2 / 3$ cups butter, softened	Fold in chocolate chips and nuts.
1 cup granulated [white] sugar	Brop by teaspoonful onto ungreased cookie sheet. $71 / 2$ to 8 minutes maximum.
1 cup brown sugar	Makes 7 dozen
2 teaspoons vanilla extract 2 eggs	
2 cups (12-ounce package) Semi-Sweet chocolate morsels	
1 cup chopped nuts (optional)	

1. 1 cup white sugar/ 3 cups of flour is a ratio found in this recipe. Write three more ratios from the recipe.
2. How many eggs are required to make 1 batch of cookies? \qquad Write this as a ratio.
3. How many eggs would be required to make three batches of cookies?

Using the ratio, set this up as a factor-label problem, with units canceling.
4. How many batches of cookies can be made with 8 cups of flour (nothing else runs out)? Show your work.
5. If you had 6 cups of brown sugar and 3 eggs, how many batches of cookies could be made? (Assume that you have plenty of everything else). Show your work.
6. The ingredient that runs out first is called the limiting reactant. In \#5 above, which is limiting, the brown sugar or the eggs?
7. Which of the two ingredients in $\# 5$ above determined how many batches of cookies could be made?

Look at the following equation: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
8. If the equation is read like a recipe, then ratios can be made of moles of each ingredient. How many moles of H_{2} are required to react with 1 mole of N_{2} ?
9. How many moles of NH_{3} can be made from 3 moles of N_{2}. Use ratios to show your work.
10. It is not practical to look at the equation in terms of moles, because we can't measure moles directly. How might you determine how many grams of N_{2} would be needed to make a certain amount of NH_{3}. Guess!

